Algorithmic Graph Theory

Winter 2014/15

6. Lecture

Rooted Spanning Trees
Rooted Trees

Def. A digraph $T = (V, E)$ with node $s \in V$ is called an *s-rooted tree*, if

- T is acyclic,
- $\text{indeg}(s) = 0$ and
- $\text{indeg}(v) = 1$ for every node $v \in V - s$.
Rooted Trees

Def. A digraph $T = (V, E)$ with node $s \in V$ is called an s-rooted tree, if

- T is acyclic,
- $\text{indeg}(s) = 0$ and
- $\text{indeg}(v) = 1$ for every node $v \in V - s$.

T contains no (directed) cyclic
Def. A digraph $T = (V, E)$ with node $s \in V$ is called **s-rooted tree**, if

- T is acyclic,
- $\text{indeg}(s) = 0$ and
- $\text{indeg}(v) = 1$ for every node $v \in V - s$.

![Diagram of rooted trees](image-url)
Rooted Trees

Def. A digraph $T = (V, E)$ with node $s \in V$ is called an s-rooted tree, if

- T is acyclic,
- $\text{indeg}(s) = 0$ and
- $\text{indeg}(v) = 1$ for every node $v \in V - s$.

![Diagrams](image-url)
Def. Let $G = (V, E)$ be a (multi-) digraph with node $s \in V$. A subgraph T of G with node set V is called s-rooted spanning tree of G, if T is a s-rooted tree.
Rooted Spanning Trees

Def. Let $G = (V, E)$ be a (multi-) digraph with node $s \in V$. A subgraph T of G with node set V is called s-rooted spanning tree of G, if T is a s-rooted tree.
Existence of Rooted Spanning Trees

Obs. Let G be a (multi-) digraph with node s. G contains an s-rooted spanning tree, if any only if every node $v \in V$ is reachable from s in G.
Existence of Rooted Spanning Trees

Obs. Let G be a (multi-) digraph with node s. G contains an s-rooted spanning tree, if any only if every node $v \in V$ is reachable from s in G.

ex. s-v path in G
Existence of Rooted Spanning Trees

Obs. Let G be a (multi-) digraph with node s. G contains an s-rooted spanning tree, if and only if every node $v \in V$ is reachable from s in G.

Proof.
See exercise sheet.
Existence of Rooted Spanning Trees

Obs. Let G be a (multi-) digraph with node s. G contains an s-rooted spanning tree, if any only if every node $v \in V$ is reachable from s in G.

Proof.

See exercise sheet.

Remark.

DFS(s) gives s-rooted spanning tree (if there is any).
Minimum Rooted Spanning Trees

Def. Given: (multi-) digraph $G = (V, E)$ with $s \in V$ and edge costs $c : E \to \mathbb{R}_{\geq 0}$.
Minimum Rooted Spanning Trees

Def. Given: (multi-) digraph $G = (V, E)$ with $s \in V$ and edge costs $c : E \to \mathbb{R}_{\geq 0}$.

Task: Find s-rooted spanning tree $T = (V, E_T)$ of G (if there is any) of minimum cost $c(E_T) = \sum_{e \in E_T} c(e)$.
Minimum Rooted Spanning Trees

Def. Given: (multi-) digraph $G = (V, E)$ with $s \in V$ and edge costs $c : E \to \mathbb{R}_{\geq 0}$.

Task: Find s-rooted spanning tree $T = (V, E_T)$ of G (if there is any) of minimum cost $c(E_T) = \sum_{e \in E_T} c(e)$.
Minimum Rooted Spanning Trees

Def. Given: (multi-) digraph $G = (V, E)$ with $s \in V$ and edge costs $c : E \to \mathbb{R}_{\geq 0}$.

Task: Find s-rooted spanning tree $T = (V, E_T)$ of G (if there is any) of minimum cost $c(E_T) = \sum_{e \in E_T} c(e)$.
Minimum Rooted Spanning Trees

Def. Given: (multi-) digraph $G = (V, E)$ with $s \in V$ and edge costs $c : E \to \mathbb{R}_{\geq 0}$.

Task: Find s-rooted spanning tree $T = (V, E_T)$ of G (if there is any) of minimum cost $c(E_T) = \sum_{e \in E_T} c(e)$.
Minimum Rooted Spanning Trees

Def. Given: (multi-) digraph $G = (V, E)$ with $s \in V$ and edge costs $c : E \rightarrow \mathbb{R}_{\geq 0}$.

Task: Find s-rooted spanning tree $T = (V, E_T)$ of G (if there is any) of minimum cost $c(E_T) = \sum_{e \in E_T} c(e)$.

Motivation:
Broadcast (send information from s to all other nodes) in a communication network.
Minimum Rooted Spanning Trees

Def. Given: (multi-) digraph $G = (V, E)$ with $s \in V$ and edge costs $c : E \to \mathbb{R}_{\geq 0}$.

Task: Find s-rooted spanning tree $T = (V, E_T)$ of G (if there is any) of minimum cost $c(E_T) = \sum_{e \in E_T} c(e)$.

Motivation:
Broadcast (send information from s to all other nodes) in a communication network.

Exercise:
Kruskal and Jarník-Prim fail in general!
Cost Modification

For every $v \neq s$ set $c_0(v) := \min\{ c(u, v) | (u, v) \in E \}$
Cost Modification

For every $v \neq s$ set $c_0(v) := \min\{c(u, v) \mid (u, v) \in E\}$
Cost Modification

For every $v \neq s$ set $c_0(v) := \min \{ c(u, v) \mid (u, v) \in E \}$

W.l.o.g. indeg(v) ≥ 1 for every $v \neq s$.
Cost Modification

For every $v \neq s$ set $c_0(v) := \min\{ c(u, v) \mid (u, v) \in E \}$

W.l.o.g. $\text{indeg}(v) \geq 1$ for every $v \neq s$.

For every edge (u, v) in G set $c'(u, v) := c(u, v) - c_0(v) \geq 0$.

![Diagram of graph transformation]
Cost Modification

For every \(v \neq s \) set \(c_0(v) := \min\{ c(u, v) \mid (u, v) \in E \} \)

W.l.o.g. \(\text{indeg}(v) \geq 1 \) for every \(v \neq s \).

For every edge \((u, v) \) in \(G \) set \(c'(u, v) := c(u, v) - c_0(v) \geq 0. \)

\(\Rightarrow \) every node \(v \neq s \) has incoming 0-edge.
Validity of the Cost Modification

Lem1. An s-rooted spanning tree of G is optimum with respect to c, if and only if it is optimum with respect to c'.
Validity of the Cost Modification

Lem\(^1\). An \(s\)-rooted spanning tree of \(G\) is optimum with respect to \(c\), if and only if it is optimum with respect to \(c'\).

Proof.

For every \(s\)-rooted spanning tree \(T = (V, E_T)\) we have
Validity of the Cost Modification

Lem\(^1\). An s-rooted spanning tree of \(G \) is optimum with respect to \(c \), if and only if it is optimum with respect to \(c' \).

Proof.

For every s-rooted spanning tree \(T = (V, E_T) \) we have

\[
c'(E_T) =
\]
validity of the cost modification

Lem\(^1\). An \(s\)-rooted spanning tree of \(G\) is optimum with respect to \(c\), if and only if it is optimum with respect to \(c'\).

Proof.

For every \(s\)-rooted spanning tree \(T = (V, E_T)\) we have

\[
c'(E_T) = \sum_{(u,v) \in E_T} (c(u,v) - c_0(v))
\]
Validity of the Cost Modification

Lem\(^1\). An \(s\)-rooted spanning tree of \(G\) is optimum with respect to \(c\), if and only if it is optimum with respect to \(c'\).

Proof.

For every \(s\)-rooted spanning tree \(T = (V, E_T)\) we have

\[
c'(E_T) = \sum_{(u,v) \in E_T} (c(u, v) - c_0(v)) \\
= \sum_{(u,v) \in E_T} c(u, v) - \sum_{v \in V - s} c_0(v)
\]
Validity of the Cost Modification

Lem\(^1\). An \(s\)-rooted spanning tree of \(G\) is optimum with respect to \(c\), if and only if it is optimum with respect to \(c'\).

Proof.

For every \(s\)-rooted spanning tree \(T = (V, E_T)\) we have

\[
c'(E_T) = \sum_{(u,v)\in E_T} (c(u,v) - c_0(v))
\]

\[
= \sum_{(u,v)\in E_T} c(u,v) - \sum_{v\in V-s} c_0(v)
\]

\(\text{indeg}_T(v) = 1\) for all \(v \neq s\) and \(\text{indeg}_T(s) = 0\)
Validity of the Cost Modification

Lem\(^1\). An \(s\)-rooted spanning tree of \(G\) is optimum with respect to \(c\), if and only if it is optimum with respect to \(c'\).

Proof.

For every \(s\)-rooted spanning tree \(T = (V, E_T)\) we have

\[
c'(E_T) = \sum_{(u,v)\in E_T} (c(u,v) - c_0(v)) \\
= \sum_{(u,v)\in E_T} c(u,v) - \sum_{v\in V-s} c_0(v) \\
= c(E_T) - \sum_{v\in V-s} c_0(v)
\]

\(\text{indeg}_T(v) = 1\) for all \(v \neq s\) and \(\text{indeg}_T(s) = 0\)
Validity of the Cost Modification

Lem\(^1\). An \(s\)-rooted spanning tree of \(G\) is optimum with respect to \(c\), if and only if it is optimum with respect to \(c'\).

Proof.

For every \(s\)-rooted spanning tree \(T = (V, E_T)\) we have

\[
c'(E_T) = \sum_{(u,v) \in E_T} (c(u,v) - c_0(v))
\]

\[
= \sum_{(u,v) \in E_T} c(u,v) - \sum_{v \in V-s} c_0(v)
\]

\[
= c(E_T) - \sum_{v \in V-s} c_0(v)
\]

\(\square\)
An Attempt

Pic for every \(v \neq s \) an incoming 0-Kante \(\sim \) subgraph \(F = (V, E_F) \) of \(G \)
An Attempt

Pic for every $v \neq s$ an incoming 0-Kante $
\rightsquigarrow\text{subgraph } F = (V, E_F) \text{ of } G$

If F acyclic $\Rightarrow F$ is s-rooted spanning tree of G!
An Attempt

Pic for every $v \neq s$ an incoming 0-Kante \rightsquigarrow subgraph $F = (V, E_F)$ of G

If F acyclic $\Rightarrow F$ is s-rooted spanning tree of G!

Note: F is optimum with respect to c' (and therefore also with respect to c)
An Attempt

Pic for every $v \neq s$ an incoming 0-Kante \leadsto subgraph $F = (V, E_F)$ of G

If F acyclic $\Rightarrow F$ is s-rooted spanning tree of G!

Note: F is optimum with respect to c' (and therefore also with respect to c) since $c'(F) = 0. \text{ and } c' \geq 0.$
An Attempt

Pic for every $v \neq s$ an incoming 0-Kante \leadsto subgraph $F = (V, E_F)$ of G

If F acyclic \Rightarrow F is s-rooted spanning tree of G!

Note: F is optimum with respect to c' (and therefore also with respect to c) since $c'(F) = 0$. and $c' \geq 0$.

Problem: What if F contains a cycle K?
Contraction

Consider (multi-) digraph $G = (V, E)$ and $U \subseteq V$ with edge costs $c : E \rightarrow \mathbb{R}_{\geq 0}$.
Contraction

Consider (multi-) digraph $G = (V, E)$ and $U \subseteq V$ with edge costs $c : E \rightarrow \mathbb{R}_{\geq 0}$.

Contraction of U: Replace $G[U]$ with new node v_U.
Contraction

Consider (multi-) digraph $G = (V, E)$ and $U \subseteq V$ with edge costs $c : E \rightarrow \mathbb{R}_{\geq 0}$.

Contraction of U: Replace $G[U]$ with new node v_U.

![Diagram showing contraction](image)
Contraction

Consider (multi-) digraph $G = (V, E)$ and $U \subseteq V$ with edge costs $c : E \rightarrow \mathbb{R}_{\geq 0}$.

Contraction of U: Replace $G[U]$ with new node v_U.

\[G \xrightarrow{U} G/U \xrightarrow{\equiv} G/U \]
Contraction

Consider (multi-) digraph $G = (V, E)$ and $U \subseteq V$ with edge costs $c : E \to \mathbb{R}_{\geq 0}$.

Contraction of U: Replace $G[U]$ with new node v_U.

Edge costs are carried over to G/U.

![Diagram of contraction](image)
Expansion

Lem². Let K be a cycle in F and \tilde{T} an s-rooted spanning tree of G/K. Then there is an s-rooted spanning tree T of G with

$$c'(T) \leq c'(\tilde{T}).$$
Expansion

Lem². Let K be a cycle in F and \tilde{T} an s-rooted spanning tree of G/K. Then there is an s-rooted spanning tree T of G with

$$c'(T) \leq c'(\tilde{T}).$$

Proof.

Every edge in \tilde{T} corresponds to edge in G.
Expansion

Lem². Let K be a cycle in F and \tilde{T} an s-rooted spanning tree of G/K. Then there is an s-rooted spanning tree T of G with

$$c'(T) \leq c'(\tilde{T}).$$

Proof.

Every edge in \tilde{T} corresponds to edge in G.

\leadsto subgraph H of G with node set V. **Diagram:**

- S
- u
- v
- v_K
- H
Expansion

Lem\(^2\). Let \(K \) be a cycle in \(F \) and \(\tilde{T} \) an \(s \)-rooted spanning tree of \(G/K \). Then there is an \(s \)-rooted spanning tree \(T \) of \(G \) with

\[
c'(T) \leq c'({\tilde{T}}).
\]

Proof.

Every edge in \(\tilde{T} \) corresponds to edge in \(G \).

\(\Rightarrow \) subgraph \(H \) of \(G \) with node set \(V \).

Add cycle \(K \) to \(H \).
Expansion

Lem\(^2\). Let \(K \) be a cycle in \(F \) and \(\tilde{T} \) an \(s \)-rooted spanning tree of \(G/K \). Then there is an \(s \)-rooted spanning tree \(T \) of \(G \) with

\[
c'(T) \leq c'(
\tilde{T}\).
\]

Proof.

Every edge in \(\tilde{T} \) corresponds to edge in \(G \).

\(\leadsto \) subgraph \(H \) of \(G \) with node set \(V \).

Add cycle \(K \) to \(H \).

\(\Rightarrow c'(H) = \)}
Expansion

Lem\(^2\). Let \(K\) be a cycle in \(F\) and \(\tilde{T}\) an \(s\)-rooted spanning tree of \(G/K\). Then there is an \(s\)-rooted spanning tree \(T\) of \(G\) with

\[c'(T) \leq c' (\tilde{T}). \]

Proof.

Every edge in \(\tilde{T}\) corresponds to edge in \(G\).

\[\leadsto \text{ subgraph } H \text{ of } G \text{ with node set } V. \]

Add cycle \(K\) to \(H\).

\[\Rightarrow c'(H) = c'(\tilde{T}). \]
Expansion

Lem\(^2\). Let \(K \) be a cycle in \(F \) and \(\tilde{T} \) an \(s \)-rooted spanning tree of \(G/K \). Then there is an \(s \)-rooted spanning tree \(T \) of \(G \) with

\[c'(T) \leq c' (\tilde{T}). \]

Proof.

Every edge in \(\tilde{T} \) corresponds to edge in \(G \).

\(\sim\sim \) subgraph \(H \) of \(G \) with node set \(V \).

Add cycle \(K \) to \(H \). \(\Rightarrow c'(H) = c'(\tilde{T}). \)

Every node in \(V \) is reachable in \(H \) from \(s \).
Expansion

\textbf{Lem}^2. Let K be a cycle in F and \tilde{T} an s-rooted spanning tree of G/K. Then there is an s-rooted spanning tree T of G with

$$c'(T) \leq c'(\tilde{T}).$$

\textbf{Proof.}

Every edge in \tilde{T} corresponds to edge in G. \rightsquigarrow subgraph H of G with node set V.

Add cycle K to H. $\Rightarrow c'(H) = c'(\tilde{T})$.

Every node in V is reachable in H from s.

Determine (arb.) s-rooted spanning tree T of H.
Expansion

Lem\(^2\). Let \(K\) be a cycle in \(F\) and \(\tilde{T}\) an \(s\)-rooted spanning tree of \(G/K\). Then there is an \(s\)-rooted spanning tree \(T\) of \(G\) with
\[
c'(T) \leq c'(\tilde{T}).
\]

Proof.

Every edge in \(\tilde{T}\) corresponds to edge in \(G\).
\(\leadsto\) subgraph \(H\) of \(G\) with node set \(V\).
Add cycle \(K\) to \(H\).
\(\Rightarrow c'(H) = c'(\tilde{T}).\)
Every node in \(V\) is reachable in \(H\) from \(s\).
Determine (arb.) \(s\)-rooted spanning tree \(T\) of \(H\).
\(T\) is \(s\)-rooted spanning tree of \(G\).
Expansion

Lem\(^2\). Let \(K\) be a cycle in \(F\) and \(\tilde{T}\) an \(s\)-rooted spanning tree of \(G/K\). Then there is an \(s\)-rooted spanning tree \(T\) of \(G\) with

\[
c'(T) \leq c'(\tilde{T}).
\]

Proof.

Every edge in \(\tilde{T}\) corresponds to edge in \(G\).

\(\sim\) subgraph \(H\) of \(G\) with node set \(V\).

Add cycle \(K\) to \(H\). \(\Rightarrow c'(H) = c'(\tilde{T})\).

Every node in \(V\) is reachable in \(H\) from \(s\).

Determine (arb.) \(s\)-rooted spanning tree \(T\) of \(H\).

\(T\) is \(s\)-rooted spanning tree of \(G\).

\[c'(T) \leq \]
Expansion

Lem2. Let K be a cycle in F and \tilde{T} an s-rooted spanning tree of G/K. Then there is an s-rooted spanning tree T of G with

$$c'(T) \leq c'(\tilde{T}).$$

Proof.

Every edge in \tilde{T} corresponds to edge in G.
\implies subgraph H of G with node set V.
Add cycle K to H.
\implies $c'(H) = c'(\tilde{T})$.

Every node in V is reachable in H from s.
Determine (arb.) s-rooted spanning tree T of H.
T is s-rooted spanning tree of G.

$$c'(T) \leq c'(H) = c'(\tilde{T})$$
\hfill \Box
Algorithm

- Compute modified edge costs c'
Algorithm

- Compute modified edge costs c'
- Determine subgraph F
Algorithm

- Compute modified edge costs c'
- Determine subgraph F
- If F is s-rooted spanning tree, return F
Algorithm

- Compute modified edge costs c'
- Determine subgraph F
- If F is s-rooted spanning tree, return F
- Otherwise determine cycle K in F

[Edmonds 1967]
Algorithm

- Compute modified edge costs c'
- Determine subgraph F
- If F is s-rooted spanning tree, return F
- Otherwise determine cycle K in F
- Compute graph G/K

[Edmonds 1967]
Algorithm

- Compute modified edge costs c'
- Determine subgraph F
- If F is s-rooted spanning tree, return F
- Otherwise determine cycle K in F
- Compute graph G/K
- Apply algorithm recursively to $(G/K, c')$
 \[\rightsquigarrow\] s-rooted spanning tree \tilde{T} for G/K

[Edmonds 1967]
Algorithm

1. Compute modified edge costs c'
2. Determine subgraph F
3. If F is s-rooted spanning tree, return F
4. Otherwise determine cycle K in F
5. Compute graph G/K
6. Apply algorithm recursively to $(G/K, c')$ resulting in s-rooted spanning tree \tilde{T} for G/K
7. Expand \tilde{T} to s-spanning tree T of G according to Lemma²
Algorithm

- Compute modified edge costs c'
- Determine subgraph F
- If F is s-rooted spanning tree, return F
- Otherwise determine cycle K in F
- Compute graph G/K
- Apply algorithm recursively to $(G/K, c')$ leading to s-rooted spanning tree \tilde{T} for G/K
- Expand \tilde{T} to s-spanning tree T of G according to Lemma2
- Return T
Runtime

Algorithm terminates at the latest, when
Runtime

Algorithm terminates at the latest, when $|V| \leq 2$.
Runtime

Algorithm terminates at the latest, when $|V| \leq 2$.

In every recursion stage the number of nodes is reduced by at least 1. \Rightarrow $O(V)$ recursive calls.
Runtime

Algorithm terminates at the latest, when $|V| \leq 2$.

In every recursion stage the number of nodes is reduced by at least 1. $\Rightarrow O(V)$ recursive calls.

Cost modification, finding a cycle, contraction and expansion take $O(E)$ time each.
Runtime

Algorithm terminates at the latest, when $|V| \leq 2$.

In every recursion stage the number of nodes is reduced by at least 1. $\Rightarrow O(V)$ recursive calls.

Cost modification, finding a cycle, contraction and expansion take $O(E)$ time each.

Thm. Edmonds’ Algorithm terminates in $O(VE)$ time.
Optimality

Lem\(^3\). Let \(K \) be a cycle in \(F \) and \(T \) be an \(s \)-rooted spanning tree of \(G \). Then there is an \(s \)-rooted spanning tree \(\tilde{T} \) of \(G/K \) with \(c'(\tilde{T}) \leq c'(T) \).
Optimality

Lem\(^2\). Let \(K \) be a cycle in \(F \) and \(\tilde{T} \) be an \(s \)-rooted spanning tree of \(G/K \). Then there is an \(s \)-rooted spanning tree \(T \) of \(G \) with \(c'(T) \leq c'(\tilde{T}) \).

Lem\(^3\). Let \(K \) be a cycle in \(F \) and \(T \) be an \(s \)-rooted spanning tree of \(G \). Then there is an \(s \)-rooted spanning tree \(\tilde{T} \) of \(G/K \) with \(c'(\tilde{T}) \leq c'(T) \).
Optimality

Lem\(^3\). Let \(K \) be a cycle in \(F \) and \(T \) be an \(s \)-rooted spanning tree of \(G \). Then there is an \(s \)-rooted spanning tree \(\tilde{T} \) of \(G/K \) with \(c'(\tilde{T}) \leq c'(T) \).

Proof. Set \(H := T/K \).
Optimality

Lem3. Let K be a cycle in F and T be an s-rooted spanning tree of G. Then there is an s-rooted spanning tree \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T)$.

Proof. Set $H := T/K$.

H is a subgraph of G/K with $c'(H) \leq$
Optimality

Lem\(^3\). Let \(K \) be a cycle in \(F \) and \(T \) be an \(s \)-rooted spanning tree of \(G \). Then there is an \(s \)-rooted spanning tree \(\tilde{T} \) of \(G/K \) with \(c'(\tilde{T}) \leq c'(T) \).

Proof. Set \(H := T/K \).

\(H \) is a subgraph of \(G/K \) with \(c'(H) \leq c'(T) \).
Optimality

Lem\(^3\). Let K be a cycle in F and T be an s-rooted spanning tree of G. Then there is an s-rooted spanning tree \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T)$.

Proof. Set $H := T/K$.

H ist subgraph of G/K with $c'(H) \leq c'(T)$.

- Every s-v path ($v \in V \setminus K$) in T becomes a (not necessarily simple) s-v path in H.
Optimality

Lem\(^3\). Let \(K \) be a cycle in \(F \) and \(T \) be an \(s \)-rooted spanning tree of \(G \). Then there is an \(s \)-rooted spanning tree \(\tilde{T} \) of \(G/K \) with \(c'(\tilde{T}) \leq c'(T) \).

Proof. Set \(H := T/K \).

\(H \) is a subgraph of \(G/K \) with \(c'(H) \leq c'(T) \).

- Every \(s-v \) path \((v \in V \setminus K)\) in \(T \) becomes a (not necessarily simple) \(s-v \) path in \(H \).
- Every \(s-u \) path \((u \in K)\) in \(T \) becomes \(s-v_K \) path in \(H \).
Optimality

Lem3. Let K be a cycle in F and T be an s-rooted spanning tree of G. Then there is an s-rooted spanning tree \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T)$.

Proof. Set $H := T/K$.

H is a subgraph of G/K with $c'(H) \leq c'(T)$.

- Every $s-v$ path ($v \in V \setminus K$) in T becomes a (not necessarily simple) $s-v$ path in H.
- Every $s-u$ path ($u \in K$) in T becomes $s-v_K$ path in H.

\Rightarrow Every node in G/K is reachable in H from s.
Optimality

Lem³. Let K be a cycle in F and T be an s-rooted spanning tree of G. Then there is an s-rooted spanning tree \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T)$.

Proof. Set $H := T/K$.

H is subgraph of G/K with $c'(H) \leq c'(T)$.

- Every s-v path $(v \in V \setminus K)$ in T becomes a (not necessarily simple) s-v path in H.
- Every s-u path $(u \in K)$ in T becomes s-v_K path in H.

\Rightarrow Every node in G/K is reachable in H from s.

Consider (arbitrary) s-rooted spanning tree \tilde{T} of H.
Optimality

Lem\(^3\). Let \(K \) be a cycle in \(F \) and \(T \) be an \(s \)-rooted spanning tree of \(G \). Then there is an \(s \)-rooted spanning tree \(\tilde{T} \) of \(G/K \) with \(c'(\tilde{T}) \leq c'(T) \).

Proof. Set \(H := T/K \).

\(H \) is a subgraph of \(G/K \) with \(c'(H) \leq c'(T) \).

– Every \(s-v \) path \((v \in V \setminus K)\) in \(T \) becomes a (not necessarily simple) \(s-v \) path in \(H \).

– Every \(s-u \) path \((u \in K)\) in \(T \) becomes \(s-v_K \) path in \(H \).

\(\Rightarrow \) Every node in \(G/K \) is reachable in \(H \) from \(s \).

Consider (arbitrary) \(s \)-rooted spanning tree \(\tilde{T} \) of \(H \).

\(\Rightarrow \) \(\tilde{T} \) is also \(s \)-rooted spanning tree of \(G/K \).
Optimality

Lem³. Let K be a cycle in F and T be an s-rooted spanning tree of G. Then there is an s-rooted spanning tree \tilde{T} of $G\!\setminus\!K$ with $c'(\tilde{T}) \leq c'(T)$.

Proof. Set $H \coloneqq T\!\setminus\!K$.

H is a subgraph of $G\!\setminus\!K$ with $c'(H) \leq c'(T)$.

- Every s-v path ($v \in V \setminus K$) in T becomes a (not necessarily simple) s-v path in H.
- Every s-u path ($u \in K$) in T becomes s-v_K path in H.

\Rightarrow Every node in $G\!\setminus\!K$ is reachable in H from s.

Consider (arbitrary) s-rooted spanning tree \tilde{T} of H.

$\Rightarrow \tilde{T}$ is also s-rooted spanning tree of $G\!\setminus\!K$ and we have $c'(\tilde{T}) \leq \ldots$
Optimality

Lem\ref{lem:optimality}. Let K be a cycle in F and T be an s-rooted spanning tree of G. Then there is an s-rooted spanning tree \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T)$.

Proof. Set $H := T/K$.

H is a subgraph of G/K with $c'(H) \leq c'(T)$.

– Every s-v path ($v \in V \setminus K$) in T becomes a (not necessarily simple) s-v path in H.

– Every s-u path ($u \in K$) in T becomes s-v_K path in H.

\Rightarrow Every node in G/K is reachable in H from s.

Consider (arbitrary) s-rooted spanning tree \tilde{T} of H.

$\Rightarrow \tilde{T}$ is also s-rooted spanning tree of G/K and we have $c'(\tilde{T}) \leq c'(H) \leq c'(T)$.
Optimality

Lemma 3. Let K be a cycle in F and T be an s-rooted spanning tree of G. Then there is an s-rooted spanning tree \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T)$.

Proof. Set $H := T/K$.

H is a subgraph of G/K with $c'(H) \leq c'(T)$.

- Every $s-v$ path ($v \in V \setminus K$) in T becomes a (not necessarily simple) $s-v$ path in H.
- Every $s-u$ path ($u \in K$) in T becomes $s-v_K$ path in H.

\Rightarrow Every node in G/K is reachable in H from s.

Consider (arbitrary) s-rooted spanning tree \tilde{T} of H.

$\Rightarrow \tilde{T}$ is also s-rooted spanning tree of G/K and we have $c'(\tilde{T}) \leq c'(H) \leq c'(T)$. \qed
Optimality

Thm. Edmonds’ Algorithm computes a minimum s-rooted spanning tree of G.
Optimality

Thm. Edmonds’ Algorithm computes a minimum s-rooted spanning tree of G.

Proof.
By induction on the number of nodes.
If F is acyclic, the algorithm is correct.
Optimality

Thm. Edmonds’ Algorithm computes a minimum s-rooted spanning tree of G.

Proof.

By induction on the number of nodes.

If F is acyclic, the algorithm is correct.

Let T^* minimum s-rooted spanning tree of G and K a cycle in F
Optimality

Thm. Edmonds’ Algorithm computes a minimum s-rooted spanning tree of G.

Proof.
By induction on the number of nodes.
If F is acyclic, the algorithm is correct.
Let T^* minimum s-rooted spanning tree of G and K a cycle in F.

Lemma3 \Rightarrow exist. s-RST \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T^*)$.

$= : \text{OPT'}$
Optimality

Thm. Edmonds’ Algorithm computes a minimum s-rooted spanning tree of G.

Proof.
By induction on the number of nodes.
If F is acyclic, the algorithm is correct.
Let T^* minimum s-rooted spanning tree of G and K a cycle in F.
Lemma$^3 \Rightarrow$ exist. s-RST \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T^*)$.
Inductive hypothesis \Rightarrow
Algorithm yields s-RST \hat{T} of G/K with $c'(\hat{T}) \leq c'(\tilde{T})$. $=: \text{OPT'}$
Optimality

Thm. Edmonds’ Algorithm computes a minimum s-rooted spanning tree of G.

Proof.

By induction on the number of nodes.

If F is acyclic, the algorithm is correct.

Let T^* minimum s-rooted spanning tree of G and K a cycle in F.

Lemma\(^3\) \Rightarrow exist. s-RST \tilde{T} of G/K with $c'(\tilde{T}) \leq c'(T^*)$.

Inductive hypothesis \Rightarrow

Algorithm yields s-RST \hat{T} of G/K with $c'(\hat{T}) \leq c'(\tilde{T})$.

Lemma\(^2\) yields s-RST T of G with $c'(T) \leq c'(\hat{T}) \leq c'(T^*)$.

$=: \text{OPT}'$
Optimality

Thm. Edmonds’ Algorithm computes a minimum s-rooted spanning tree of \(G \).

Proof.

By induction on the number of nodes.

If \(F \) is acyclic, the algorithm is correct.

Let \(T^* \) minimum s-rooted spanning tree of \(G \) and \(K \) a cycle in \(F \).

Lemma\(^3\) \(\Rightarrow \) exist. s-RST \(\tilde{T} \) of \(G/K \) with \(c'(\tilde{T}) \leq c'(T^*) \).

Inductive hypothesis \(\Rightarrow \)

Algorithm yields s-RST \(\hat{T} \) of \(G/K \) with \(c'(\hat{T}) \leq c'(\tilde{T}) \).

Lemma\(^2\) yields s-RST \(T \) of \(G \) with \(c'(T) \leq c'(\hat{T}) \leq c'(T^*) \).

\(\Rightarrow \) \(T \) is optimum w.r.t. \(c' \) and thus w.r.t. \(c \).

\[\boxed{\text{OPT}' = \text{OPT}'} \]